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a  b  s  t  r  a  c  t

Traffic  generated  semi-  and  non-volatile  organic  compounds  (SVOCs  and  NVOCs)  pose  a  serious  threat
to  human  and  ecosystem  health  when  washed  off  into  receiving  water  bodies  by  stormwater.  Climate
change  influenced  rainfall  characteristics  makes  the estimation  of these  pollutants  in stormwater  quite
complex.  The  research  study  discussed  in  the  paper  developed  a prediction  framework  for  such  pollutants
under the dynamic  influence  of  climate  change  on rainfall  characteristics.  It was  established  through  prin-
cipal component  analysis  (PCA)  that  the  intensity  and  durations  of low  to  moderate  rain  events  induced
by  climate  change  mainly  affect  the  wash-off  of  SVOCs  and  NVOCs  from  urban  roads.  The  study  out-
comes  were  able  to overcome  the  limitations  of stringent  laboratory  preparation  of  calibration  matrices
by  extracting  uncorrelated  underlying  factors  in  the  data  matrices  through  systematic  application  of
PCA and  factor  analysis  (FA).  Based  on  the  initial  findings  from  PCA  and  FA, the  framework  incorporated
orthogonal  rotatable  central  composite  experimental  design  to set  up calibration  matrices  and  partial
least  square  regression  to identify  significant  variables  in predicting  the  target  SVOCs  and  NVOCs  in four

particulate  fractions  ranging  from  >300  to  1 �m and  one  dissolved  fraction  of  <1  �m.  For  the  particu-
late  fractions  in  >300–1  �m range,  similar  distributions  of predicted  and  observed  concentrations  of  the
target  compounds  from  minimum  to 75th  percentile  were  achieved.  The  inter-event  coefficient  of  vari-
ations  for  particulate  fractions  of  >300–1  �m was  5–25%.  The  limited  solubility  of  the  target  compounds
in  stormwater  restricted  the  predictive  capacity  of  the  proposed  method  for  the  dissolved  fraction  of

<1 �m.

. Introduction

Traffic related semi- and non-volatile organic compounds
SVOCs and NVOCs) are primarily associated with diesel fuels, fuel
ils, heavier engine oils and lubricants [1].  Homologous series of
-alkanes from decane to tetracontane are amongst the most com-
on constituents of these products, which are widely used in motor

ehicles, and have the potential to pollute the urban water envi-
onment through deposition and wash-off from urban roads [2].
ainfall characteristics such as, intensity, duration and frequency
r average recurrence intervals (ARIs) are predicted to undergo
ignificant changes as a result of climate change. In this context,

he Commonwealth Scientific and Industrial Research Organisation
CSIRO) has forecasted longer periods of dry weather with fewer,
ut more intense storms in Australia due to climate change [3].

∗ Corresponding author. Tel.: +61 7 3138 1092; fax: +61 7 3138 1170.
E-mail addresses: s.mahbub@qut.edu.au (P. Mahbub), a.goonetilleke@qut.edu.au
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304-3894/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2012.01.062
© 2012 Elsevier B.V. All rights reserved.

Such climate change driven changes in the rainfall characteristics
will affect the wash-off processes of various stormwater pollutants
including the SVOCs and NVOCs.

The detrimental effects of SVOCs and NVOCs on human health
have been widely reported in research literature. Mutagenic evi-
dence in mammalian cells caused by diesel engine exhaust particles
has been cited by Bao et al. [4]. Morgan et al. [5] attributed the
long term exposure to diesel engine exhaust particles to respira-
tory allergy, cardiopulmonary mortality and risk of lung cancer.
Petroleum related activities have also been attributed to signif-
icant wetland loss in the Mississippi Delta [6].  While studies on
the impacts of traffic generated volatile organic compounds such
as BTEXs (benzene, toluene, ethylbenzene and xylene) in urban
roads [7] and ambient atmosphere have commonly been under-
taken [8,9], such pollutants have only been characterised in terms
of concentrations and modelled for the ambient atmosphere [10].

However, it is important to note that pollutants present in the urban
atmosphere are not necessarily deposited on the urban roads due
to various climatic factors. Therefore, compartment-based multi-
media models (e.g. separate wash-off models from pervious and
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mpervious surfaces) are particularly suitable in rationalising the
ifferences in environmental fate and transport of pollutants in a
efined environment [11]. Nevertheless, the wash-off phenomenon
rom urban roads becomes complex when the changed rainfall
haracteristics due to climate change affect the wash-off processes
f such pollutants. In this context, the current state of knowledge
n traffic generated semi- and non-volatile organic compounds
SVOCs and NVOCs) available on roads for wash-off is very limited.

Mahbub et al. [12] recently proposed a prediction model for
he build-up of five traffic generated volatile organic compounds
n urban roads. However, their model did not investigate the
ncertainties involved in the wash-off of the wide range of traf-
c generated pollutants from roads under climate change driven
hanges to rainfall characteristics. Accurate estimations of the con-
entrations of available SVOCs and NVOCs on roads in wash-off
nder climate change are required in order to undertake mitigation
easures for the management of such pollutants in stormwater

unoff. Accordingly, this research study presents a framework for
redicting the concentrations of traffic generated SVOCs and NVOCs

n wash-off under climate change influenced rainfall character-
stics. This approach is expected to contribute to overcome the
ncertainties inherent in the wash-off estimation of traffic gener-
ted SVOCs and NVOCs by predicting these pollutants based on the
ignificance of individual predictors and consequently, strengthen-
ng the appropriate measures for pollution mitigation.

. Materials and methods

.1. Site selection

Four road sites within a 5 km radius from a meteorological gaug-
ng station were selected as the wash-off study sites. The station

as located at 27.90◦S and 153.31◦E at an elevation of 6 m above
ean sea level with daily rainfall data recorded since 1894. The

elected road sites were situated in three relatively new suburbs in
he Gold Coast region, Australia with the transport infrastructure
eveloped in the last decade. The sites were in different land uses
uch as residential, commercial and industrial in order to incorpo-
ate a mix  of vehicular traffic characteristics. The locations, traffic
nd pavement characteristics of the selected sites are provided in
he supplementary data. Due to their close proximity to the rain
auging station, it was hypothesised in this study that the pre-
icted changes in the rainfall characteristics at the four study sites
esulting from climate change are similar to that at the rain gauging
tation.

.2. Rainfall simulation incorporating climate change

The research study used a rainfall simulator [13] to replicate
he design rainfall events resulting from climate change. The rain-
all simulation was based on the studies of Abbs et al. [14] who
redicted the average fractional change for extreme rainfall inten-
ities at 2, 24 and 72 h durations for the Gold Coast area in Australia
or 2030 and 2070 using CSIRO general circulation model known as
C-MK3 and CSIRO regional downscaling model known as RAMS.
everal climate change studies [3,15] have predicted that the prob-
bility of occurrence of shorter duration (<2 h) events with a large
hange in precipitation intensities is very high.

Mahbub et al. [16] used the outcome from the Abbs et al. [14]
tudy and proposed the following three scenarios to describe the
limate change influenced rainfall characteristics in the Gold Coast

egion:

Shorter duration, with higher intensity with ARI constant;
Shorter ARI, shorter duration with intensity constant; and
Materials 213– 214 (2012) 83– 92

• Shorter ARI, with higher intensity while duration becomes
shorter.

The current study incorporated these scenarios by simulating
the 2009 and 2030 rainfall characteristics in the Gold Coast region
of Australia according to the study by Mahbub et al. [16]. As the
subsequent chemometric data analyses and interpretations require
referencing to these simulated rainfall events, Table 1 is reproduced
in this paper.

A  total of twenty-two rain events were simulated in the four
selected road sites. It was  not feasible to simulate all twenty-two
rain events simultaneously at all four sites due to time restrictions
imposed by the city council on road lane closures. Therefore, the
simulation events were distributed among the four study sites in
different sets of intensity ranges of 24.6–39.3, 58.3–63, 75–77 and
119–125 mm/h.

2.3. Wash-off sample collection

The rainfall simulations were undertaken over a 2 month period
from April to May  2009. Wash-off samples resulting from the sim-
ulations were collected using a commercially available vacuum
cleaner. The weather was dry and the temperature during the sam-
pling ranged between 22 ◦C and 25 ◦C. The collection plots were
3 m2 in size and were located in the middle of the traffic lanes at
the study sites, marked with permanent markers, and thoroughly
cleaned with deionised water. Then the plots were left for seven
dry days to allow for traffic generated pollutants to build-up. This
allowance of seven dry days was in conformity with the findings
of Egodawatta [17] who  noted that the pollutant build-up on road
surfaces asymptote to an almost constant value after an antecedent
dry period of 7 days. The collection plots were connected to a col-
lection trough [13]. The runoff water in the collection trough was
vacuumed continuously into 25 L plastic containers. The plastic
containers were washed thoroughly inside out with 10% HCl fol-
lowed by Decon 90® detergent wash and rinsed throughout with
deionised water. The containers were then dried at 40 ◦C for 48 h
before collecting samples from the field. A photo of the sample
collection procedure is provided in the supplementary data.

After collection, the runoff samples were transported to the
laboratory for sub-sampling immediately. As pollutant concentra-
tions can vary by orders of magnitude during a runoff event, the
flow weighted average or event mean concentration (EMC) sam-
ples were found to be appropriate for evaluating the impacts of
stormwater runoff on receiving waters [18]. In this study, 500 mL
EMC  samples in amber glass bottles were prepared in the labora-
tory using a churn splitter. The required volumes at a particular
duration constituting an EMC  sample were determined from the
percentages of the total runoff collected in different containers for
that duration and mixed together to obtain the 500 mL  EMC  sample
for an event.

The particle size distributions of the suspended solids in the
subsamples were determined using a Malvern Mastersizer S Par-
ticle Size Analyser capable of analysing particles between 0.05
and 900 �m diameter. The particle size distributions of the sub-
samples were used as a guide for maintaining homogeneity in
the sub-samples throughout the sample splitting process. Based
on the particle size distribution, the total particulate analytes in
the 500 mL  EMC  subsamples were fractioned into four size ranges,
namely, >300 �m,  150–300 �m,  75–150 �m,  1–75 �m using wet
sieving. The filtrate passing through a 1 �m membrane filter was
considered as the total dissolved fraction. In each case, 500 mL

homogeneous sub-samples were prepared using deionised water,
collected in 500 mL  amber glass bottles with a PTFE seal, pre-
served with 5 mL  of 50% HCl at 4 ◦C in the laboratory and analysed
within 40 days of collection. A total of 110 wash-off samples were
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Table  1
Simulation events based on the daily rainfall intensity at study sites in the Gold Coast region for 2030.

Scenario Simulation events for Gold Coast region for 2009 Future simulation events for Gold Coast region for 2030

Simulation
event

Duration
(min)

Intensity
(mm/h)

ARI (year) Simulation
event

Duration
(min)

Intensity
(mm/h)

ARI
(year)

Shorter duration, with higher
intensity with ARI constant

1 60 39.3 1 19 25 63 1
3 90 39.3  2 20 42.5 61.2 2
5 133 39.3  5 21 69 59.2 5
6 160  39.3 10 22 85 58.3 10

18  105 75 100 13 49 115 100
–  – – 2 65 37.39 1

Shorter ARI, shorter duration with
intensity constant

12 45 125 100 7 5 125 1
– – – 4 120 24.6 1

Shorter ARI, with Higher intensity
whilst duration becomes shorter

14 52.5 77 10 10 16 125 5
15 67.5  77 20 11 21 122 10
16  86.7 77 50 9 10.5 120 2
17 101.25  77 100 8 5.75 119 1
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dapted from Mahbub et al. [16].a
a Copyright: IGI Global Source Publication; reprinted by permission of the publis

repared for the 22 simulated rain events with each event consist-
ng of five samples based on the size fractions mentioned above.

The extractions of SVOCs and NVOCs were performed by
iquid–liquid extraction with 250 mL  hexane as the exchange sol-
ent according to USEPA method 3510C [19]. The extracted samples
ere then cleaned using standard column cleanup protocol with

 cm silica gel and 5 cm pyrex® glass wool topped with 5 cm
nhydrous Na2SO4 [19]. Sample concentration was then carried
ut using the Kuderna–Danish apparatus followed by the nitro-
en blowdown technique [19]. The sample concentration was
ontinued until a final volume of 1 mL  was achieved for gas chro-
atographic (GC) analyses.

.4. Sample testing

Based on USEPA approved methods for the determination of
iesel range organics, Wisconsin DNR [20] has identified seventeen
raffic generated SVOCs and NVOCs (from octane to tetracontane)
s constituents from the larger organic compound group (i.e. diesel
ange organics) and developed modified methods for their deter-
ination in soil, stormwater and wastewater matrices. Whilst,

oth petrol and diesel engine vehicles emit gaseous and partic-
late hydrocarbons as a result of incomplete combustion [21],
ndreou and Rapsomanikis [22] noted that past studies mainly
haracterised only one organic group (polycyclic aromatic hydro-
arbons). The mutagenic and other detrimental impacts of traffic
enerated SVOCs and NVOCs on human health has been cited in
esearch literature (for example 4–6). Therefore, this research study
ocused on the above mentioned seventeen traffic generated SVOCs
nd NVOCs.

The target SVOCs for the study were octane (OCT), decane (DEC),
odecane (DOD), tetradecane (TED), hexadecane (HXD), octade-
ane (OCD), eicosane (EIC), docosane (DOC), tetracosane (TTC),
exacosane (HXC), and octacosane (OCC) having boiling points
anging from 125 ◦C to 432 ◦C [23]. For the convenience of the
redictive framework proposed in the study, the target SVOCs
ere further separated into two groups based on their molecu-

ar weights, namely ‘light SVOC’ and ‘heavy SVOC’. The ‘light SVOC’
roup consisted of four SVOCs from octane to tetradecane whilst
he ‘heavy SVOC’ group consisted of the remaining seven SVOCs
rom hexadecane to octacosane. The target NVOCs were triacontane
TCT), dotriacontane (DTT), tetratriacontane (TRT), hexatriacontane
HXT), octatriacontane (OTT), and tetracontane (TTT) with boiling

oints ranging from 449 ◦C to 525 ◦C [23].

USEPA methods 3510C, 8015, 8021, and 8260 [19] were adopted
or the determination of SVOCs. Draper et al. [2] proposed modifi-
ations to the USEPA methods to determine motor oils with carbon
numbers up to C38. This study used these modifications as a guide
to establishing the gas chromatographic (GC) temperature program
for simultaneous determination of both SVOCs and NVOCs. Details
of SVOC and NVOC test methods, chemical compositions as well as
relative comparisons of chemical concentrations with past studies
are provided in the supplementary data.

Other physico-chemical variables such as total suspended solid
(TSS) and total organic carbon (TOC) were determined by methods
2540D and 5310B [24]. Additionally, the pH and electrical conduc-
tivity (EC) of each sample were measured using standard pH and
EC probes in the laboratory according to methods 4500-H+ B and
2510B, respectively [24].

2.5. Data analysis

Data matrices were constructed for light SVOCs, heavy SVOCs
and NVOCs for the five size fractions noted above. Each matrix
consisted of twenty-two objects with numerical object identifiers
(same as the simulation events in Table 1) starting with 1. Rainfall
characteristics such as, intensity, frequency, and duration as well
as the physico-chemical characteristics such as TSS, TOC, pH, and
EC were considered to be the independent variables causing the
wash-off of the target SVOCs and NVOCs. After initial observation
of the probability distribution of the objects and variables, stan-
dardisation of each variable and normalisation of each object were
undertaken as pre-treatment measures.

The data analysis was designed to investigate the wash-off
process of SVOCs and NVOCs under climate change conditions
and then to apply the findings from the initial investigations to
develop a prediction framework for light SVOCs, heavy SVOCs and
NVOCs wash-off. Multivariate chemometrics methods such as prin-
cipal component analysis (PCA), factor analysis (FA), experimental
design, and partial least squares (PLSs) regression were employed
for the data analysis. Discussions of these techniques are given in
the supplementary data.

3. Results and discussion

3.1. Exploratory principal component analysis

Wash-off data matrices for light SVOCs, heavy SVOCs and NVOCs
were analysed for all five size fractions. Fig. 1 shows the PCA
biplots for total particulate (<300–1 �m)  and dissolved fractions

(<1 �m).  This study adopted the rain events classification under
climate change proposed by Mahbub et al. [25]. Events with inten-
sity <40 mm/h  with relatively low ARI were classified as low
events; those having intensity between 50 and 100 mm/h  but with
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Fig. 1. PCA biplots of particulate (>300–1 �m combined) and the dissolved (<1 �m)  fractions for light SVOCs, heavy SVOCs and NVOCs for the 22 rain events shown with
numerical identifiers which are same as the simulation event numbers described in Table 1.
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Table  2
New independent variables for underlying factors (starting with initials L, H or N) in the data matrices of light SVOC, heavy SVOC, and NVOC.

Rain events Underlying factors

Light SVOC Heavy SVOC NVOC

L1 L2 L3 L4 H1 H2 H3 H4 N1 N2 N3 N4 N5

1 −1.258 −0.061 1.173 0.195 −0.522 −0.840 −0.232 1.037 −1.194 1.598 −0.342 −0.966 0.708
2  −1.070 0.043 0.987 0.516 −0.668 −0.881 −0.278 0.951 −1.037 1.671 −0.148 0.088 0.423
3 −0.871  −0.554 0.376 0.083 −0.471 −1.034 0.618 0.897 −1.141 0.448 −0.498 1.109 −0.976
4 −1.475  −0.262 0.527 0.257 −0.545 −1.355 0.229 0.704 −1.516 0.575 0.004 0.052 0.172
5 −1.245  −0.412 −0.192 0.366 −0.958 −1.294 −0.119 0.086 −1.423 −0.286 −1.154 −0.337 −0.293
6  −1.701 −0.519 −0.308 −0.281 −0.913 −1.610 −0.340 0.048 −1.510 −0.776 −0.508 −0.580 −1.358
7  1.466 −0.443 2.265 −0.071 −0.747 1.708 −0.008 2.027 1.232 1.651 −0.777 0.583 −1.126
8  1.234 −0.517 2.166 −0.605 −0.276 1.554 0.600 1.981 1.361 1.877 −0.233 0.151 −1.012
9 1.052  0.138 0.390 0.974 0.562 1.165 −0.448 0.235 1.363 0.205 0.206 −0.724 −0.075

10 1.128  −0.120 0.078 −0.052 −0.510 1.137 −0.757 −0.072 1.233 −0.088 0.083 −0.162 −0.439
11 1.377  0.278 −0.910 −0.267 −0.251 1.052 −1.039 −0.608 1.262 −0.564 −0.457 −0.513 0.479
12  1.113 0.326 −1.384 −0.469 0.042 0.818 −1.213 −1.117 0.827 −1.148 −0.683 0.796 −0.209
13  0.978 −0.004 −0.949 3.348 0.008 0.303 −0.668 −0.678 0.419 −1.029 −0.550 1.998 −0.894
14  0.293 −0.677 −0.647 −0.816 −0.628 0.696 0.891 −1.411 0.488 −0.712 −0.427 −1.516 0.710
15  0.212 −0.974 −0.558 −0.892 0.548 0.322 2.140 −0.676 0.147 −0.540 −0.049 −0.900 0.338
16  0.144 −0.845 −0.650 −0.875 0.741 0.035 1.415 −0.382 0.383 −1.026 −0.825 −0.495 1.105
17  0.062 −0.972 −1.120 −0.806 −0.521 0.300 1.013 −1.638 −0.141 −1.157 −0.166 −0.876 −1.051
18  −0.255 −1.256 −0.784 −0.311 −0.240 −0.170 1.711 −0.630 −0.342 −0.552 3.688 −0.236 −1.589
19  −0.074 1.602 0.773 −0.684 3.162 −0.019 −0.369 0.696 0.522 0.961 1.208 0.980 1.171
20 −0.163  3.101 −0.147 −0.862 0.124 −0.158 −1.362 −0.606 0.121 0.190 1.121 −0.452 2.076
21  −0.322 1.516 −0.892 −0.519 2.260 −1.227 −0.095 0.151 −0.590 −0.922 0.270 2.618 1.630
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22  −0.625 0.612 −0.194 1.771 −0.197 −0.5

elatively higher ARIs of up to 50 years were classified as moderate
vents; events having intensities >100 mm/h  with very high fre-
uency were classified as high events whilst events with similar

ntensities to moderate and high with extremely rare occurrence
ARI ≥ 100 years) were classified as extreme events. Events which

anifested the attributes of both low and moderate events were
lassified as low to moderate events.

Based on the classification, events 1, 2, 3, 4, 5, 6 were grouped
s low events; events 19, 20, 21 were grouped as low to moderate
vents; events 14, 15, 16, 22 were grouped as moderate events; 7, 8,
, 10, 11 were grouped as high events; 12, 13, 17, 18 were grouped
s extreme events. In Fig. 1, two important facts were noted. Firstly,
he average recurrence intervals (ARIs) are uncorrelated to both
he intensities and durations of events as the loading vector of
RI is nearly perpendicular to those of intensities and durations

Fig. 1b–f). Therefore, any prediction framework for SVOCs and
VOCs should not include all three of them together as measured
ariables. As the intensities and durations were more strongly cor-
elated with the target variables than ARI (Fig. 1a–f), the analysis
xcluded ARI from the measured variables list in the subsequent
nalysis. The relative importance of other variables such as, pH, EC,
SS, TOC in the prediction of the target compounds during wash-off
as substantiated based on their positive correlations with these

ompounds in Fig. 1a–f.
The second important fact evident in the biplots of Fig. 1 was

hat the low, low to moderate and moderate rain events formed
lusters strongly correlated to the target compounds during wash-
ff except in Fig. 1d. This suggested that the low, low to moderate
nd moderate rain events primarily caused the wash-off of the light
VOCs, heavy SVOCs and NVOCs. These preliminary findings were
seful in selecting the experiments (i.e. rain events) to construct
he calibration matrices in the experimental design.

.2. Factor analysis
Factor analysis in two phases, namely, factor extraction and
rthogonal varimax rotation was performed to identify the under-
ying independent factors of the data matrices for light SVOCs,
eavy SVOCs and NVOCs. After careful investigation of the rotated
−1.686 −0.996 −0.463 −0.376 0.237 −0.621 0.206

component matrices for light SVOCs, heavy SVOCs and NVOCs
which consisted of the correlations between the measured vari-
ables and the factors, four underlying factors were found to be
sufficient for the light SVOC and heavy SVOC matrices whilst five
factors were deemed necessary for the NVOC matrix. These inde-
pendent factors were extracted based on the initial eigenvalue
criteria ≥1. The underlying factors were assigned with numerical
identifiers each starting from 1 with initials ‘L’, ‘H’ and ‘N’ for light
SVOCs, heavy SVOCs and NVOCs respectively. New variables for
each factor corresponding to the twenty-two rain events were then
created by the regression method [26] as shown in Table 2.

The new variables (i.e. factor scores) generated in Table 2 were
used in the subsequent PLS regression models to predict the corre-
sponding target variables.

3.3. Experimental design

Three calibration sets for the PLS model were optimised with
two level orthogonal rotatable central composite design for light
SVOCs, heavy SVOCs, and NVOCs. As the number of factor levels and
their values were unknown in the design, the study incorporated
the Sirius software [27] generated coded values for the two levels,
namely, high and low and incorporated 35 experiments (28 individ-
ual experiments and 7 replicate experiments at centre) for the light
SVOCs and heavy SVOC data matrices. Similarly, the study incor-
porated 50 experiments (46 individual experiments and 4 central
replicate experiments) for the NVOC data matrix. A higher number
of experiments for NVOCs were required due to the large number
of underlying factors in the NVOC data matrix. Experiments were
only chosen from low, low to moderate and moderate rain events
as these were found to be the primary events causing the wash-
off of the target compounds. It was ensured that each of the five
size fractions contributed to the calibration matrices by selecting
at least seven experiments from each fraction. In Fig. 2, PCA biplots
for three calibration sets are shown.
With few exceptions, in Fig. 2a–c, most of the central experi-
ments were found close to the origin of the biplots, which meant
that these were replicates of the same or similar experiments and
did not need to be included in the design. The central or replicate
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xperiments with initial ‘C’.

xperiments were chosen in order to identify any curvature present
n the response surface by comparing their mean values with that
f the rest of the experiments. In Fig. 2a, 12 experiments were
ound to be very strongly correlated with target the compounds
odecane (DOD) and octane (OCT), in Fig. 2b, 13 experiments were
ound to be strongly correlated with all target heavy SVOCs whilst in
ig. 2c, 19 experiments were found to be strongly correlated with all
arget NVOCs. This suggested that the calibration matrices closely

orresponded with the wash-off of the target compounds under
limate change influenced rainfall characteristics even though the
otal variances explained by the PCs in Fig. 2 were around 45–53%.
he calibration sets are provided in the supplementary data.
nd (c) NVOCs with original experiments are shown with initial ‘E’ and replicate

3.4. PLS model validation

In the PLS regression, the target compounds OCT, DEC, DOD, TED,
HXD, OCD, EIC, DOC, TTC, HXC, OCC, TCT, DTT, TRT, HXT, OTT, and
TTT were considered as dependent or measured variables whilst the
factors extracted in the factor analysis process along with intensity,
duration, TSS, TOC, pH, and EC were considered as the predictor
variables. A cross-validation method [28] that left one experiment

out at a time from the calibration set was used to measure the stan-
dard error in cross-validation (SECV). The following three criteria
were employed to determine the required number of PLS compo-
nents for regression:
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Table 3
PLS regression parameters for predictor variables.

Measured
variables

PLS
components

Variance explained
by predictor
variables, %

Variance explained
by measured
variables, %

Coefficient of
determination, r2

SECV Regression coefficients for predictor variables

TSS TOC pH EC Intensity Duration Underlying factors

L1a L2a L3a L4a

OCT 1 31.87 39.40 0.50 0.94 −0.29 −0.28 −0.18 0.22 I.F.d I.F.d −0.21 I.F.d I.F.d I.F.d

DEC 1 65.51 57.55 0.57 0.71 I.F.d −0.03 −0.04 I.F.d −0.04 0.03 I.F.d I.F.d I.F.d I.F.d

DOD 1 46.28 45.17 0.50 0.86 I.F.d −0.09 −0.27 0.01 −0.27 0.20 −0.06 I.F.d I.F.d I.F.d

TED 1 50.96 46.48 0.50 0.96 I.F.d 0.26 0.29 I.F.d I.F.d −0.24 I.F.d 0.13 0.03 I.F.d

Measured
variables

PLS
components

Variance explained
by predictor
variables, %

Variance explained
by measured
variables, %

Coefficient of
determination, r2

SECV Regression coefficients for predictor variables

TSS TOC pH EC Intensity Duration Underlying factors

H1b H2b H3b H4b

HXD 1 55.24 51.08 0.60 0.95 0.04 I.F.d 0.50 I.F.d I.F.d I.F.d I.F.d I.F.d 0.29 I.F.d

OCD 1 61.50 57.07 0.67 1.00 I.F.d I.F.d 0.08 −0.19 0.22 −0.19 −0.22 −0.13 I.F.d I.F.d

EIC 1 52.96 45.03 0.60 1.00 −0.20 −0.10 0.15 −0.23 I.F.d I.F.d −0.39 I.F.d I.F.d I.F.d

DOC 1 47.89 42.61 0.63 0.97 I.F.d I.F.d 0.20 −0.19 0.47 I.F.d I.F.d −0.23 I.F.d I.F.d

TTC 1 55.33 54.25 0.67 1.00 I.F.d I.F.d I.F.d I.F.d −0.21 I.F.d −0.40 I.F.d −0.36 I.F.d

HXC 1 46.82 47.64 0.70 0.96 −0.13 −0.10 −0.27 −0.27 I.F.d −0.08 I.F.d I.F.d I.F.d I.F.d

OCC 1 39.09 30.71 0.51 1.00 0.17 I.F.d I.F.d −0.17 I.F.d −0.09 I.F.d I.F.d I.F.d −0.31

Measured
variables

PLS
components

Variance explained
by predictor
variables, %

Variance explained
by measured
variables, %

Coefficient of
determination, r2

SECV Regression coefficients for predictor variables

TSS TOC pH EC Intensity Duration Underlying factors

N1c N2c N3c N4c N5c

TCT 1 60.93 62.19 0.71 1.00 I.F.d 0.08 −0.23 −0.18 0.13 −0.11 I.F.d −0.13 I.F.d I.F.d −0.18
DTT  1 65.69 69.02 0.81 0.84 0.60 I.F.d −0.04 I.F.d I.F.d I.F.d I.F.d I.F.d I.F.d I.F.d −0.08
TRT  1 66.51 63.67 0.80 1.00 0.31 −0.17 I.F.d I.F.d I.F.d I.F.d 0.37 I.F.d I.F.d I.F.d −0.16
HXT  1 69.56 64.51 0.78 1.00 0.17 I.F.d 0.25 I.F.d I.F.d −0.22 −0.07 I.F.d I.F.d 0.17 I.F.d

OTT 1 73.96 76.76 0.80 0.94 0.27 I.F.d −0.16 I.F.d I.F.d −0.16 0.30 I.F.d I.F.d I.F.d I.F.d

TTT 1 65.79 66.04 0.82 0.97 0.23 I.F.d −0.05 I.F.d I.F.d −0.23 0.19 I.F.d 0.16 0.15 I.F.d

a Underlying factors in the light SVOC matrix.
b Underlying factors in the heavy SVOC matrix.
c Underlying factors in the NVOC matrix.
d Insignificant factors in the PLS prediction model for corresponding measured variables.
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SECV ≤ 1;
10% maximum difference between the percentage variance
explained by the predictor and the measured variables;
Additional PLS components will only be included if the percent-
age variance explained by the predictor with the inclusion of an
additional PLS component increases by more than 10%.

Table 3 gives the outcome of the PLS regression based on the
bove criteria.

The outcomes of the PLS regression model was optimised with a
educed number of predictor variables in Table 3. Therefore, not all
f the predictor variables were required to predict the individual
arget components in Table 3. As a final step in the model validation,

ata matrices were constructed from the remaining rain events that
ere not used in the construction of the calibration matrices. In

his study, the validation of the PLS model was performed by com-
aring the distributions of the box plot statistics of observed and
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ig. 3. Distributions of the box plot statistics for observed and predicted target com-
ounds at (a) >300 �m showing similar distributions from minimum to 75th quartile
or 14 compounds except DOC, HXC and OTT and at (b) <1 �m showing dissimilar
istributions for most compounds.
Materials 213– 214 (2012) 83– 92

predicted data matrices for the five size fractions. Fig. 3 shows the
distributions for >300 �m and <1 �m size fractions. The box plot
statistics for the remaining particulate fractions are shown in the
supplementary data.

In Fig. 3a, it is evident that except for DOC, HXC and OTT, the
distributions of the concentrations of the remaining 14 target com-
pounds are quite similar from minimum to 75th quartile in the
observed and predicted data matrices. Other particulate fractions
also showed similar results with very few exceptions. However, the
dissolved fraction of <1 �m did not show any such similarity among
the box plot statistics in Fig. 3b. This is attributed to the fact that the
solubilities of the target compounds in water are very low and these
compounds are mainly attached to the particulate solid fractions
during their wash-off. In fact, in a very recent study of SVOC and
NVOC build-up on urban roads, Mahbub et al. [29] established that
SVOCs and NVOCs remain attached primarily with the particulate
fractions of 75–300 �m.  In order to derive a more comprehensive
outlook on the validation of the PLS model, the coefficient of vari-
ation (CV%) of the predicted concentrations for the remaining rain
events were analysed and the results are shown in Fig. 4.

Horwitz [30] suggested a range of ±20% for the coefficient of
variation at the ppm level concentrations estimation of organic
compounds in different laboratories. In Fig. 4, the inter-event per-
centage CV are investigated for the five size fractions and it is clearly
evident that the CV% were as high as 55% for the dissolved fraction
of <1 �m.  However, the CV% were in the range of 5–25% for the
particulate fractions from >300 �m to 1 �m with very few excep-
tions. This also confirmed the fact that the solubility of the target
compounds were very low in water and hence, compromises the
predictive capacity of the PLS framework for the dissolved fraction
of <1 �m.  The PLS framework performed with acceptable predic-
tions within the range of minimum to 75th quartile of the observed
concentration values at particulate fractions from >300 to 1 �m for
the different rainfall characteristics influenced by climate change.

In several chemometric studies where experiments were con-
ducted under stringent laboratory conditions, the experimental
design of the calibration matrices gave better prediction results. For
example, Sivakumar et al. [31] achieved ≤2% coefficient of variation
in an optimisation study aimed at commercial domperidone and
pantoprazole preparation with three independent factors assumed
significant priori. In another study, Ni et al. [32] reported up to 36%
error during the prediction of nitrobenzene and nitro-substituted

phenols using the single component PLS method with the num-
ber of measured variables taken as significant factors in the data
matrices. Both of these studies (i.e. 31 and 32) used chemometric
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Fig. 4. Coefficient of variations (CV%) of the predicted concentrations at the rain
events not used in the calibration.
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xperimental design to predict the response variables with prior
nowledge of independent factors and the calibration and valida-
ion sets were prepared under strict laboratory conditions.

The advantage of the current study over the past studies is that
his proposed framework allows the introduction of underlying
ncorrelated factors into the data matrices. Therefore, it is not nec-
ssary to assume significant factors priori. Considering the fact that
tringent laboratory conditions could not be applied into the exper-
mental design of the calibration matrices as the wash-off sample
ollection was field based, the model’s ability to predict most of the
ight SVOCs, heavy SVOCs and NVOCs within an acceptable range
rovide researchers a robust tool to forecast the concentrations of
hese pollutants in particulate fractions of wash-off due to climate
hange induced rainfall characteristics.

. Conclusions

This research study established a prediction framework for
VOCs and NVOCs under climate change induced rainfall scenario
nd presented a useful tool for estimating the concentrations of
hese pollutants under a dynamic situation. The study found that
he intensity and durations of low to moderate rain events mainly
ffect the wash-off of semi- and non-volatile organic compounds
rom urban roads. The study also proposed that the extraction
f the underlying uncorrelated factors within the data matrices
onstructed from environmental samples can overcome the strin-
ent conditions for the laboratory preparation of calibration and
alidation matrices for a successful experimental design. The opti-
isation of the prediction of the wash-off of SVOCs and NVOCs

nder climate change induced rain events were achieved by consid-
ring only the significant variables for a particular compound. The
hoice of the PLS components based on SECV <1, 10% maximum
ifference in variances explained by the predictor and measured
ariables as well as minimum 10% increase in variance by the
nclusion of extra components resulted in reduced numbers of
ignificant predictor variables for acceptable prediction perfor-
ance for the wash-off of SVOCs and NVOCs in particulate fractions

300–1 �m.
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